.well-known

This is a Brave Rewards publisher verification file. Domain: mathematicsway.blogspot.com Token: 61623a436e7c44ba1310544150d3db370336fd3a7242d9db2869ad9e33470742

Followers

Friday, December 16, 2011

LINEAR EQUATIONS


 THE  STRAIGHT  LINE

   General Equation of Lines

           General Equation of the first degree is of the form  Ax + By + C = 0,  where A, B and C are constants. If  A = 0, the line is horizontal, if  B = 0, the line is vertical, if  C = 0  and A and B have the same sign, the line passes through the origin and inclines to the left and if  C = 0  and  A and B have opposite signs, the line passes through the origin and inclines to the right.   
         
   Standard Equations of Lines

        1.  Point – slope form                                      4.  Intercept form 

        2.  Two point form                                            5.  Normal form

        3.  Slope – intercept form


   POINT-SLOPE FORM

                   Slope of the line L

                                 m  =    y – y1      .       
                                            x – x1

                                y – y1  =  m (x – x1)           [ point–slope form ]

                              where  m  is the given slope and (x1, y1)  is the given point

        Example 1 : Find the equation of the line passing through ( 3, –2) with slope 2. 

                                y – y1  =  m (x – x1)

                                y – (–2) = 2( x – 3 )

                                y + 2 = 2x – 6    

                                y = 2x – 6 – 2

                                y = 2x – 8  

                                2x – y = 8


        


        Example 2 : Find the equation of the line passing through (–3, 2) with slope ½ .

        Example 3 : Find the equation of the line passing through (1, 3)  with slope – 2/3.

        Example 4 : Find the equation of the line passing through (2, 0)  with slope 3.


   Two point form

                    Slope of the line,   m  =   y2 – y1    .  
                                                            x2 – x1 

                    Equation of the line by point–slope form :

                                           y – y1  =  m (x – x1)

                    Substituting  m  for the slope :  

                                            y – y1  =    y2 – y1  ( x – x1 )       [ Two-point form ]
                                                             x2 – x1 

      Example 1 : Find the equation of the line passing through (–3, 2) and ( 3, 5).

                                            y – y1  =    y2 – y1  ( x – x1 )        [ with  (3, 5) as point 1 ]
                                                             x2 – x1 

                                            y – 5  =     2 – 5   ( x – 3 )       
                                                          – 3 – 3 

                                            y – 5  =     – 3   ( x – 3 )       
                                                             – 6

                                            y – 5 = ½ (x – 3 )

                                           2y – 10 = x – 3

                                           2y – x = 10 – 3

                                           2y – x = 7

                                           x – 2y = – 7    

                                           x – 2y + 7 = 0


      Example 2 : Find the equation of the line passing through (–2, –2) and ( 4, 5).

      Example 3 : Find the equation of the line passing through (–3, 0)  and (2, – 4).

      Example 4 : Find the equation of the line passing through ( 4, 0)  and (0, – 6).

      Example 5 : Find the equation of the line passing through (–4, 0)  and (0, 3).



      Slope–Intercept form

 


                       Slope of line L ,    m  =   y – b      .       
                                                              x – 0

                                                    y – b  =  mx – 0

                                                    y  =  mx  +  b             [ Slope – intercept form ]    

                                 where   m is the slope  and  b  the y-intercept of the line
   

      Example 1 : Find the equation of the line with slope –2  and a  y-intercept  4.

                                                    y  =  mx  +  b             

                                                    y  =  –2x  +  4

                                                     2x  +  y  =  4    



     Example 2 : Find the equation of the line with slope 2/3 and a y-intercept –1.
      
     Example 3 : Find the equation of the line with a y-intercept 3/2 and slope 1/3.

     Example 4 : Find the equation of the line with slope – 2/5 and a y-intercept 2.
      
     Example 5 : Find the equation of the line with a y-intercept 4/3 and slope – 3. 

     Example 6 : Find the equation of the line with a y-intercept  – 3/2 and slope 2. 

     Example 7 : Find the equation of the line with a y-intercept   5/2 and slope – 4. 
                
                        
  REDUCTION OF GENERAL EQUATION OF LINES TO SLOPE-INTERCEPT FORM           

       Example  1:  Reduce the equation 2x – 3y  =  6 to slope-intercept form.

                        Solution :
                                                 2x – 3y  =  6 

                                                      – 3y  =  –2x  + 6 

                                                           y  =  (–2x + 6 )/(–3) 

                                                           y  =  2/3 x  – 2

                                          therefore,  m  = 2/3   and  b = – 2
 

        Example  2:  Reduce the equation  x + 3y  =  3  to slope-intercept form.
        Example  3:  Reduce the equation  x – 2y  =  4  to slope-intercept form.
        Example  4:  Reduce the equation  3x + y  =  6  to slope-intercept form.
        Example  5:  Reduce the equation  x – 5y  =  5  to slope-intercept form.
 

       Intercept form  



                          Slope of line L ,  m =   b – 0     =  – b/a          
                                                              0 – a

                         Equation of line  L  by point – slope form with  (a, 0)  as point 1

                                      y – y1  =  m (x – x1)

                                      y – 0  =  – b/a (x – a)

                                           y  =  – b/a x  + b

                                      transpose the term involving x and multiply all terms by  a

                                         ay  + bx  =  ab

                                         bx  +  ay  =  ab



                                  divide all terms by  ab

                                         x    +    y     =   1               [ Intercept form ]
                                         a          b  


                                   where   a is the x-intercept and b is the y-intercept  



   Example 1:  Determine the equation of the line with x-intercept 2/5 and y-intercept 3/4.  

                                         x    +    y     =   1               
                                         a          b  

                                         x     +     y      =  1               
                                       2/5         3/4  

                                         5x     +     4y      =  1               
                                         2               3   


                                        6(5x )      +     6(4y)    =  6               
                                           2                    3   

                                         3( 5x)   +  2( 4y)  =  6

                                             15x  +  8y  =  6          






   Example 2:  Determine the equation of the line with x-intercept –3 and y-intercept 4.
  
   Example 3:  Determine the equation of the line with x-intercept ½ and y-intercept 1/3.  

   Example 4:  Determine the equation of the line with x-intercept  2/3 and y-intercept –4.  

   Example 5:  Determine the equation of the line with x-intercept –4/5 and y-intercept –2.
  
   Example 6:  Determine the equation of the line with x-intercept – 4/3 and y-intercept 3.  

   Example 7:  Determine the equation of the line with x-intercept  3/5 and y-intercept  – 5.

















Normal  form
                                 Slope of the line segment ON,  m = tan a

                                 Slope of the line  L,  m =  –1/tan a
      
                         Equation of line  L   by  point – slope form

                                   y – y1  =  m (x – x1

                                   y – Psin a  =  –1/tan a (x – Pcos a)

                                  y tan a - P sin a tan a  =  –x  + P cos a,   but  tan a =  sin a / cos a

                                  y sin a / cos a - P sin 2a/ cos a  =  –x  + P cos a

                                  x  +  y sin a / cos a  =  P sin 2a/ cos a  + P cos a

                                multiply  all terms  by  cos a

                                  x cos a  +  y sin a  =  P sin 2a  + P cos2a

                                  x cos a  +  y sin a  =  P(sin 2a + cos2a),   but  sin 2a  + cos2a = 1

                               \  x cos a  +  y sin a  =  P 
               
                 where    p  is the normal distance of the line L from the origin and
                               a  is the normal angle     


           Example 1: Find the equation of the normal line with p = 2  and  a = 60°.

                         Solution :
                                           x cos a  +  y sin a  =  P 

                                           x cos 60°  +  y sin 60°  =  2 

                                            ½ x  +  y(Ö3 /2) = 2
 
                                                      x  +  yÖ3  =  4  



             Example 2: Find the equation of the normal line with p = 3  and  a = 30°.

             Example 3: Find the equation of the normal line with p = 2  and  a = – 30°.

             Example 4: Find the equation of the normal line with p = Ö2  and  a = 225°.

             Example 5: Find the equation of the normal line with p = 3  and  a = – 120°.

             Example 6: Find the equation of the normal line with p = Ö8  and  a = 135°.




DISTANCE FROM A LINE TO A POINT


The distance d from the line L to the point  P1(x1, y1 ) can be determined in the following manner. If the equation of L  in normal form is
                      x cos a + y sin a – p  = 0,  

the equation of the line L1 through P1 and parallel to L is defined by

                     x cos a + y sin a – ( p + d )  =  0

Since P1(x1, y1 ) is a point on L1, then we have the equation

                    x1 cos a  +   y1 sin a – ( p + d )  = 0
                                                                                                                       
                   x1 cos a  +   y1 sin a –  p –  d  = 0
         hence,
                      d  =   x1 cos a  +  y1 sin a –  p

                      d  =   x1 kA  +  y1 kB – (– kC )

                      d  =   A x1  +  By1  +  C .
                             ± √ A2 + B2   




    Theorem : The signed distance from the line Ax + By + C = 0 to the point  
                      P1(x1 , y1 ) is given by the formula

                               d  =   A x1  +  By1  +  C .
                                           ± √ A2 + B2   

         where the sign of the radical is chosen to be opposite the sign of C.  When C = 0,  choose the sign of the radical to be the same as the sign of B. This will  make  d  positive when  P1  lies above L.  If  C = 0, and  B = 0,  choose the sign of the radical to be the same as the sign of A. This will make d positive  when P1 is to the right of  L.

In accordance with the definition of d in the above theorem, it should be         
noted that
          1) d is positive if the origin and the point  P1  lie on opposite sides of the
               given line; and
         2) d is negative when the origin and  P1  lie on the same side of the line.

 Example :

 1. Find the distance from the point (-3,1) to the line 3x + 4y –12 =0.

                    d  =   A x1  +  By1  +  C                 .       
                                ± √ A2 + B2   
                                
                     d =    3( -3 ) + 4 ( 1 ) – 12              .  
                                    ± √ 32 + 42   

                     d =   – 9 + 4 – 12     =   –   17  .      
                               ± √ 32 + 42                 5
                                                           
  A.  Find the distance of the point from the given line :                                    

           1)  3x – 2y = 6,  ( 2, 4 )           3)  3x – y = 0,    ( 2, – 4)   
             
           2)  2x + y = 2 ,  (–1, 8 )           4)  5x – 12y = 1,  (4, 1 )
                           
 B. Find the distance of the given lines from the origin.

            1)  2x – 3y = 6                        3)  2y + 10 = 0 

            2)   x + 2y =  2                        4)  3x – 12 = 3
 





No comments:

Post a Comment