.well-known

This is a Brave Rewards publisher verification file. Domain: mathematicsway.blogspot.com Token: 61623a436e7c44ba1310544150d3db370336fd3a7242d9db2869ad9e33470742

Followers

Friday, December 9, 2016

Lesson 1 Trigonometry


TRIGONOMETRY

1. Trigonometry – is a branch of mathematics that deals with the relationship between the angles and sides of a triangle and the theory of the periodic functions connected with them.
2.  Triangle – a figure formed by three line segments joining three points that are not in the same plane.
3.  Right triangle – a triangle with at least one right angle.   
4.  Oblique triangle – any triangle which has no right angle.
     Oblique triangles are classified according to sides and according to angles as :
        i) According to sides                   ii)  According to angles
           a) equilateral triangle                   a)  equiangular triangle
           b) isosceles  triangle                    b)  acute triangle
           c) scalene triangle                       c)  obtuse triangle
5.  Congruent triangles – two triangles with the same shape and size.
6.  Similar triangles – two triangles with the same shape but not necessarily of the same size.

7. Altitude of a triangle – the length of the line segment from any vertex of a triangle that is  perpendicular to the opposite side.

8.  Hypotenuse – the longest side of the triangle that is opposite to the right angle.

9. Perimeter of a triangle – is the distance around the triangle and is equal to the sum of the three sides.           
                                     P =  a + b + c

10. The area of a triangle is ½  of the base ( b ) times the altitude ( a ). 

                                                       A = ½ b a 

       If the three sides are given, the area is given by the formula
 

RIGHT TRIANGLES

11. Pythagorean theorem – in any right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.


                                                   c2  =  a2  +  b2 
                                                   b2  =  c2 a2 
                                                   a2  =  c2 b2 


                 *  Proofs of Pythagorean theorem


Examples :  Find the missing side, the perimeter and the area of the given right triangle.

                        1.  a =  12 cm ,  c =  13  cm

                        2.  b = 12 cm ,  a = 9 cm

                        3.  c = 35 cm,   b = 21 cm

                        4.  a = 36 cm,   b = 48 cm

                        5.  a = 81 cm,   c =  135 cm
                           
                        6.  c = 12 cm,   a =  6 cm

       7.  Will a round glass table top, 2.5 m in diameter, fit through a doorway 
             which is 2.13 m high  and 0.96 m  wide ?

       8.  A rectangle has a base of 12 cm. If the diagonal is 15 cm, determine 
             the altitude of the rectangle.   

       9.  The area of a square is 128 cm2. Determine the length of its diagonal.


     From Geometry :

                The sum of the measure of the three angles of a triangle is equal to  180° 

                                 From the figure above :

                                 ab  +  90°  =  180°  

                                 ab =  180° – 90°  

                                 ab = 90° 

               Hence, the sum of the measure of the acute angles of a right triangle is 
                            equal to 90°.

   Examples :  Find  a  or  b.

                 1.  a = 36° 24’  32’’                        5.  b = 56°  43’  27’’

                 2.  b =  68°  13’                             6.  a = 62° 54’  12’’

                 3.   a =  47° 19’                             7.   b = 73° 24’  32’’       

                 4.  a =  17°  21’  36”                      8.  a = 16° 48’

                                  
PROPERTIES OF SIMILAR TRIANGLES

Basic principle :
              The ratio of any two sides of a right triangle with an acute angle depends 
         only on the size of the angle and not on the size of the triangle.

Ratios

               AX    =    BY    =    CZ     =     opposite side       =   sine a   =   sin  a                       .
              OX          OY          OZ              hypotenuse         

               OA    =    OB   =    OC   =    adjacent side       =   cosine a  =  cos  a                      .  
               OX          OY         OZ            hypotenuse         

               AX   =   BY    =   CZ     =    opposite side    =  tangent a  =  tan a                          .
               OA       OB         OC           adjacent side         

              OA    =   OB   =  OC    =    adjacent side      =  cotangent a  = cot a                        .
              AX          BY       CZ           opposite side         

               OX    =  OY   =    OZ   =    hypotenuse     =   secant a  =  sec  a                          .
               OA        OB         OC        adjacent side         

              OX    =   OY   =    OZ    =    hypotenuse    =  cosecant a  = csc a                        .
               AX         BY         CZ         opposite side         

Memory aid

                        SOH                    CHO
                        CAH                    SHA
                        TOA                    CAO   

The six trigonometric ratios are called trigonometric functions.

The value of each of the six trigonometric functions of an acute  angle  is determined  
when  the  acute angle is given.  Furthermore, it can be shown that, if the value of 
one of the six trigonometric functions of an acute angle is equal to the value of 
the same function of a second acute angle, the two acute angles are equal.

         Example
                       1.    OA = 9 cm,  AX = 12 cm,   OX =  15 cm
                              OB = 21 cm,  BY = 28 cm,   OY =  35 cm  
                              OC = 33 cm,  CZ = 44 cm,   OZ =  55 cm

                       2.   OA = 5 cm,  AX = 12 cm,   OX =  13 cm
                             OB = 10 cm,  BY = 24 cm,   OY =  26 cm  
                             OC = 20 cm,  CZ = 48 cm,   OZ =  52 cm

                       3.   OA = 6 cm,  AX = 8 cm,   OX =  10 cm
                             OB = 12 cm,  BY = 16 cm,   OY =  20 cm  
                             OC = 24 cm,  CZ = 32 cm,   OZ =  40 cm


FUNCTIONS OF ACUTE ANGLE


                        1.  Sin a                      4.  csc a
                        2.  cos a                      5.  sec a
                        3.  tan a                       6.  Cot a

Exercises

       1.  If sin a =  3/5, find cos a, tan a,  sec a,  csc a  and  cot a.

       2.  If tan a =  5/12, find cos a, sin a,  sec a,  csc a  and  cot a.

       3.  If cot a =  8/15, find cos a, tan a,  sec a,  csc a  and  sin a.

       4.  If cos a =  12/13, find sin a, tan a,  sec a,  csc a  and  cot a.

       5.  If csc a =  2, find cos a, tan a,  sec a,  sin a  and  cot a.

       6.  If sec a =  5/4, find cos a, tan a,  sin a,  csc a  and  cot a.

       7.  If cos a =  4/5, find sin a, tan a,  sec a,  csc a  and  cot a.

       8.  If tan a =  5/12, find cos a, sin a,  sec a,  csc a  and  cot a.

 9.  Given a right triangle 



       Prove that    a)  sin a / cos a  =  tan a


                           b)  sin a cos a  =  ab /( a2 + b2 )

                           c)  ( sin a ) 2  +  ( cos a ) 2   =  1
                                                                                                                                                 
                           d)  ( sec a ) 2  –  ( tan a ) 2   =  1

                           e)  ( csc a ) 2  –  ( cot a ) 2   =   1  


10. In the figure, RS = 60 cm, cos a = 4/5, sin q = 5/13,  determine the length of the sides QR,
         QS and  QP.                                                                                                

11.  Using the same figure, determine the unknowns if  sin a = 3/5, and cos q = 12/13 .

12.  Two guy wires are attached to a pole 12 m above the ground level. They make 
        angles of  43° and  72°  with the ground at points which are in a line with the 
       base of the pole. How long are the wires?               
13.  At low tide the angle of elevation to the top of  12 m tall tree from the water’s 
        edge is 60°. At high tide the angle of elevation to the top of the tree is  30°.  
        How high does the water level rises during the high tide along the line 
        perpendicular to the shore ?     

14. Determine the height of the World Trade Center in New York City if from a window
        in a building 91.5 m away the angle of depression to the base of the Trade Center 
        is 68° while the angle of elevation to the top is 62°.          

15.  A light house casts a shadow of 9m when the angle of elevation of the sun is 56°. 
         How high is the light house?      

16.  The angle of elevation to a balloon from a point on the ground is 32°.  After a 
        vertical ascent  of  68 m the angle of depression from the balloon to the same 
        point on the ground is 47°. What are the original and present heights of the balloon?   

17. From a point 25 m from the base of a tower, a bird flies to its top in a straight path 
        at an angle of elevation of 75° 32’.  How long is the flight path of the bird ? 
        What is the height of the tower ?