.well-known

This is a Brave Rewards publisher verification file. Domain: mathematicsway.blogspot.com Token: 61623a436e7c44ba1310544150d3db370336fd3a7242d9db2869ad9e33470742

Followers

Thursday, January 29, 2015

LESSON 5 : PARABOLA

PARABOLA

Parabola is the locus of a point which moves so that its distance from a fixed point and a fixed line are equal.

The fixed point is called the focus of the parabola and the  line is called the directrix of the parabola.


      DD’  –  directrix
      E, E’  –  end points of the latus rectum
      V  –  vertex of the parabola
       F – focus of the parabola 
      VF = a   –  focal distance
       DD’V =  VF =  a 
      EF = FE’  =  2a
  The axis of the parabola is horizontal ( OX ).

From the above figure and by definition of parabola :

 PF  =  PQ  

Ö ( x – a )2 + ( y – 0 )2    =  ( x + a ) 

Square both sides

( x – a )2 + y2  = ( x + a )2

X2 – 2ax + a2  + y2  =  x2  + 2ax  + a2

X2 – x2 + a2 – a2 + y2 = 2ax + 2ax

y2 =  4ax 
 
Standard equation of a parabola having horizontal axis and opens to the right.        
                                                          
From the figure above and by definition of parabola :

PF  =  PQ

Ö( x – 0)2 + ( y – a )2   =  y + a

Square both sides

X2 + y2 – 2ay + a2  =    y2 + 2ay + a2

X2 + y2 – y2 + a2 – a2  =  2ay  + 2ay

X2 = 4ay
Standard equation of a parabola with vertical axis (OY) and opens upward.

General Equation of a Parabola

1.  x2 + Dx + Ey + F = 0 ,  E ¹ 0,   with vertical axis ( OY )

2.  y2 + Dx + Ey + F = 0,   D ¹ 0,  with horizontal axis (Ox )

Standard Equation of the Parabola

A. with vertex at V( 0, 0 )

      1.  y2 =  4ax  ----   opens to the right

      2.  y2 =  – 4ax  ----  opens to the left

      3.   x2 = 4ay  ----  opens upward

      4.   x2 =  – 4ay  ----  opens downward  
     
B. with vertex at  V( h, k )

      1.  ( y – k )2 =  4a( x – h )    ----   opens to the right

      2.  ( y – k )2 =  – 4a( x – h)  ----  opens to the left

      3.   ( x – h )2 = 4a( y – k )   ----  opens upward

      4.  ( x – h )2 =  – 4a( y – k   ----  opens downward  

Examples.

Draw the graph of the following parabola.
  1.  2x2 – 8y = 0                                   3.  x2 + 2x – 6y = 2
  2.  3y2 + 18x = 0                     4.  y2 + 2y – 6x = 2 
 5.  x2 + 4y – 4 = 0                                 8.  y2 + 8x  + 16 = 0
 6.  y2 – 4x + 4 = 0                                 9.  x2 = 4x + 4y 
 7.  y2 + 2x + 6y + 17 = 0                     10.  x2 – 2x + 2y + 7 = 0


QUADRATIC FUNCTIONS

        A function of the form y = ax2 + bx + c,  where  a ¹ 0 is a quadratic function. Since the equation has the form of the general equation of a parabola  x2 + Dx + Ey + F = 0, the graph of every quadratic function is a parabola with a vertical axis. It is concave upward if a is positive or concave downward if a is negative.

           At the vertex of the parabola,  x = – b/2a. This value of x gives the function its minimum value if a is positive or concave downward if a is negative.    The   equation   of the   axis of the   parabola is x = – b/2a.   

        As x increases, many functions increase to a maximum value, decreasing thereafter, or decrease to a minimum and begin to increase. In such cases, it is a problem of prime importance to determine the maximum or minimum value. To solve problems for functions in general, differential calculus is required. For the quadratic function it may evidently be solve by merely finding the vertex of the parabola, since the ordinate of the vertex is the greatest or least ( algebraically ) of all the ordinates, according as the parabola opens downward or upward.


STEPS IN GRAPHING A QUADRATIC FUNCTION
  1. Compute x = – b/2a, and then the corresponding value  of y
      to obtain the coordinates of the vertex of the parabola.
       
  2. If the value of  x = – b/2a is convenient, form a table by using
      pairs of values of x where each pair, the values are
      equidistant from the vertex on either side. The value of y
      corresponding to any pair will be equal.

  3. If the value of  x = – b/2a  is inconvenient, form the table by
      choosing values of x arbitrarily on either side of  x = – b/2a.

Example.  Determine the critical points whether it is maximum or minimum.
                1.  y  =  x2 – 10x + 25 
                2.  y =  4x –  x2                                               
                3.  y =  2x2 – 10x + 3
                4.  y = 15x – 3x2  
                                                          
Application problems.

Use quadratic function to evaluate the following problems. 
 1. Find the dimensions of the largest rectangular lot that can be
     enclosed by 100 m of fencing material.
      
 2. A rectangular field is to be fenced off along the bank of a
   river. If no fence is needed along the river, what is the shape
  of the field requiring 400 m of fence if the area is to be
  maximum?

   1. Solution
       Let  x and y be the dimensions (length and width) of the lot       
            Area         :   A = xy
               Perimeter :    2x + 2y = 100                                      
                                x +  y = 50                                                                            
                                y = 50 – x
                            x(50 – x ) = A                                                                                             
                             50x – x2  =  A                                              
                           Standardize the equation :
                               X2 – 50x = – A                                                                
                            x =  – b/2a  = – (–50) / 2 ( 1 )
                            x =  25 m  
                            y = 50 – x
                            y = 50 – 25
                            y = 25 m

                  Alternately :       

                                          By completing the square :
                              x2 – 50x + 625 = – A + 625  
                             ( x – 25 )2 = – ( A – 625 )
                             x – 25 = 0        |   A – 625 = 0
                             x = 25 m          |   A = 625 m2   
                            y = 50 – 25
                              = 25 m
               The dimensions are 25 m by 25 m.  
               The maximum area is  625 m2                  
  B.  Use quadratic functions to solve the problems. 
     1. A rectangular field is to be enclosed, and divided into three
        lots by fences parallel to one of the sides. Determine the
      dimensions of the largest field that can be enclosed by
      2,400 m of fencing material.
  
    2.  A rectangular lot  is to be fenced off along a highway. If the
         fence along the highway cost  P 150 per meter, and on the
         other sides  P 100 per meter, determine the dimensions of
         the largest lot that can be enclosed  for a budget of
         P 100,000.
  
    3. A rectangular field is to be fenced off along the bank of a
        river. If no fence is needed along the river, what is the
        shape of the  field requiring 400 m of fence if the area is to
        be maximum?

   4. A triangle has a base of  12 cm  and an altitude of  8 cm. 
       Find the area of the largest rectangle that can be inscribed
       in the triangle so that the base of the rectangle falls on the              
       base of the triangle.  

   5. A right triangle has a hypotenuse of  30 cm.  Show that the
       area is maximum when the triangle is isosceles.